Website is intended for physicians
Search:
Всего найдено: 5

Abstract:

Patients with suspected peripheral artery disease (PAD) with critical limb ischemia (CLI) require intervention for limb salvage. Successful revascularization depends on quality and accurate visualization of vascular bed of lower limbs. Recent advances in imaging technology have significantly impacted the preoperative assessment of patients with PAD. The following is a description of main invasive techniques of obtaining high-quality images of arteries of lower limbs.

Aim: was to summarize data of modern literature sources, on the effectiveness of modern instrumental diagnostic methods for early and effective invasive assessment of blood flow and perfusion of lower limbs for planning revascularization interventions and assessing its effectiveness.

Material and methods: we analyzed sources of Russian and foreign literature over the past 5 years on the issue of modern possibilities of invasive diagnosis of critical lower limb ischemia. When choosing sources, we relied on the information content of described methods, the relevance of research, results of which are being applied today, and outlined prospects for their application in the future.

Conclusions: over the years, digital subtraction angiography has been traditionally the «gold standard» for intravascular imaging of lower limbs. Over time, this method has been improved because technological advances have created high-quality alternatives for preoperative (computed tomography [CT] angiography and magnetic resonance angiography [MRA]) and intraoperative imaging (Vascular Flow Reserve [VFR], intravascular ultrasound [IVUS], optical coherence tomography [OCT] and angiography CO2).

 

 

Abstract:

Introduction: сarotid chemodectoma is a benign, slowly growing, vascularized tumor that is one of the most common paragangliomas of head and neck. It is localized in the area of anterior surface of neck - in the area of carotid artery bifurcation. Despite the relative knowledge of the disease, surgical treatment of patients with these newgroth is difficult due to development of intraoperative hemorrhagic complications.

Aim: was to assess possibilities of primary embolization in the complex treatment of patients with chemodectoma.

Materials and methods: 70-year-old female patient was examined and treated. She was admitted with complaints on painless, pulsating, gradually progressive newgrowth of neck. After examination, carotid chemodectoma was diagnosed. The first stage was selective embolization of branches of the external carotid artery (ECA) feeding the tumor. Open chemodectomectomy was performed three days after embolization.

Results: analysis of literature sources and our case report showed that the volume of blood loss during an open operation for removal of chemodectoma using previous embolization is insignificant. This aspect also leads to a reduction of time of the intervention.

Conclusions: preoperative chemodectoma embolization significantly reduces the volume of blood loss and reduces the risk of developing other complications.

 

 

References

1.     Qaqish N, Gaillard F. Carotid body tumor. 2020.

https://radiopaedia.org/articles/carotid-body-tumour

2.     Martins R, Bugalho MJ. Paragangliomas/Pheochromocytomas: clinically oriented genetic testing. Int J Endocrinol. 2014; 2014: 794187.

3.     Shamsi ZA, Shaikh FA, Wasif M. Hypoglossal Nerve Paraganglioma Depicting as Glomus Tumor of Neck. Iranian Journal of Otorhinolaryngology. 2021; 33(115): 113-117.

4.     Lv H, Chen X, Zhou Sh, et al. Imaging findings of malignant bilateral carotid body tumors: A case report and review of the literature. Oncol Lett. 2016; 11(4): 2457-2462.

5.     Hoang VT, Trinh CT, Lai AKh, et al. Carotid body tumor: a case report and literature review. J Radiol Case Rep. 2019; 13(8): 19-30.

6.     Wieneke JA, Wieneke AS. Paraganglioma: Carotid Body Tumor. Head Neck Pathol. 2009; 3(4): 303-306.

7.     Cobb AN, Barkat A, Daungjaiboon W, et al. Carotid Body Tumor Resection: Just as Safe without Preoperative Embolization. Ann Vasc Surg. 2018; 46: 54-59.

8.     Jackson RS, Myhill JA, Padhya TA, et al. The Effects of Preoperative Embolization on Carotid Body Paraganglioma Surgery: A Systematic Review and Meta-analysis. Otolaryngol Head Neck Surg. 2015; 153(6): 943-50.

 

Abstract:

Introduction: osteoarthritis (OA) is the most common disease of the musculoskeletal system, the main cause of pain development, loss of joint function and, as a consequence, one of leading factors of population disability. Treatment strategy for patients with gonarthrosis is not fully defined, especially in patients with grade 1-2. In this cohort of patients, conservative treatment is indicated, but it does not always lead to a decrease in the severity of pain, significantly reducing the quality of life. One of treatment options for such patients is transcatheter embolization of the hypervascular area of popliteal arteries.

Aim: was to present a case report of the successful use of transcatheter arterial embolization of branches of the popliteal artery in gonarthrosis.

Materials and methods: patient B., 72 years old, consulted a rheumatologist in November 2019 with complaints on pain in knee joints, aggravated by movements, going up and down stairs, as well as pain in the area of small joints of the feet, ankle, and shoulder joints. In view of the ineffectiveness of conservative therapy, patient was offered transcatheter embolization of branches of the hypervascular area of the popliteal artery. Selective embolization of the artery of the hypervascular vasculature of right knee joint was performed under local anesthesia.

Results: 1 month after the procedure, patient noticed a significant decrease in the intensity of pain in right knee joint, increased range of motion. The result of filling out the WOMAC questionnaire 1 month after embolization of popliteal artery branches was 26 points (satisfactory result). At the visit 3 months after the manipulation, patient noted the persistence of effect of procedure. The result of the WOMAC questionnaire is 22 points.

Conclusions: transcatheter arterial embolization of the hypervascular area in osteoarthritis of various origins and localization can be successfully used as an alternative treatment if conservative therapy is ineffective and if there are contraindications to surgical treatment.

 

 

References

1.     Bannuru RR, et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis and cartilage. 2019; 27(11): 1578-1589.

2.     Spitaels D, et al. Epidemiology of knee osteoarthritis in general practice: a registry-based study. BMJ open. 2020; 10(1).

3.     Litwic A, et al. Epidemiology and burden of osteoarthritis. British medical bulletin. 2013; 105(1): 185-199.

4.     Kabalyk MA. Prevalence of osteoarthritis in Russia: regional aspects of trends in statistical parameters during 2011-2016. Rheumatology Science and Practice. 2018; 56(4): 416.

5.     Vitaloni M, et al. Global management of patients with knee osteoarthritis begins with quality of life assessment: a systematic review. BMC musculoskeletal disorders. 2019; 20(1): 493.

6.     Gr?ssel S, Muschter D. Peripheral nerve fibers and their neurotransmitters in osteoarthritis pathology. International Journal of Molecular Sciences. 2017; 18(5): 931.

7.     Okuno Y, et al. Transcatheter arterial embolization as a treatment for medial knee pain in patients with mild to moderate osteoarthritis. CardioVascular and Interventional Radiology. 2015; 38(2): 336-343.

8.     Landers S, et al. Protocol for a single-centre, parallel-arm, randomised controlled superiority trial evaluating the effects of transcatheter arterial embolisation of abnormal knee neovasculature on pain, function and quality of life in people with knee osteoarthritis. BMJ open. 2017; 7(5).

9.     Palazzo C, et al. Risk factors and burden of osteoarthritis. Annals of physical and rehabilitation medicine. 2016; 59(3): 134-138.

10.   McAlindon TE, Bannuru RR, Sullivan MC, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis and Cartilage. 2014; 22(3): 363-388.

11.   Dieppe P, Lim K, Lohmander S. Who should have knee joint replacement surgery for osteoarthritis? International Journal of Rheumatic Diseases. 2011; 14(2): 175-80.

12.   Kim JR, Yoo JJ, Kim HA. Therapeutics in osteoarthritis based on an understanding of its molecular pathogenesis. International journal of molecular sciences. 2018; 19(3): 674.

13.   William HR, Christin ML, Qian W, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nature Reviews Rheumatology. 2016; 12(10): 580-592.

14.   Yiyun W, Jiajia X, Xudong Z, et al. TNF-?-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis. Cell Death and Disease. 2017; 8(3): 2715-2715.

15.   Turovskaya EF, Alekseeva LI, Filatova EG. Current ideas about the pathogenetic mechanisms of pain in osteoarthrosis. Scientific and practical rheumatology. 2014; 52 (4): 438-444 [In Russ].

16.   Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. National Reviews Rheumatalogy. 2012; 8(7): 390.

17.   Ashraf S, Mapp PI, Walsh DA. Contributions of angiogenesis to inflammation, joint damage, and pain in a rat model of osteoarthritis. Arthritis & Rheumatology. 2011; 63(9): 2700-2710.

 

Abstract

The phenomenon of unrecovered coronary blood flow, or the «no-reflow» phenomenon, is the most formidable and insufficiently studied example of clinical failures after percutaneous coronary intervention (PCI) and is manifested as the absence of filling of distal coronary arteries. As a result, endovascular treatment may be completely unsuccessful or may be complicated by delayed recovery, the development of systolic dysfunction, the formation of heart aneurysm and other serious problems. Many experimental and clinical studies have been devoted to «no-reflow», but the evidence for this or that way of influencing the appearance of this phenomenon is very ambiguous. This article presents modern aspects related to risk factors, pathophysiology and methods for diagnosing this complication, as well as an analysis of methods for the prevention and correction of the developed «no-reflow» phenomenon.

 

References

1.     Alekyan B.G. Endovascular diagnosis and treatment of heart and vascular diseases in the Russian Federation - 2017. Endovaskulyarnaya hirurgiya. 2018. T.5, №2. S.93- 240 [In Russ]. 

2.     Van de Werf F. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST- Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Van de Werf F., [et al.] Eur Heart J. 2008. Vol. 29, P. 2909-2945.

3.     Bazanov I.S. Endovascular interventions on venous bypass (literature review). Vestnik RUDN. Seriya: Medicina. 2017. T.21, №2. S.171-183. [In Russ].

4.     Interventional Cardiology. Coronary angiography and stenting: a guideline. M.: GEOTAR-Media, 2010. S.410. [In Russ].

5.     Kaul, S. The «no reflow» phenomenon following acute myocardial infarction: Mechanisms and treatment options. Kaul, S. Journal of Cardiology. 2014. Vol. 64, No.2, P. 77-85.

6.     Kloner R.A. The «no-reflow» phenomenon after temporary coronary occlusion in the dog. Kloner R.A., Ganote C.E., Jennings R.B. J Clin Invest. 1974, Vol. 54, P. 14961508. 

7.     Czarnowska E. Ultrastructural demonstration of endothelial glycocalyx disruption in the reperfused rat heart. Involvement of oxygen free radicals. Czarnowska E, Karwatowska-Prokopczuk E. Basic Res Cardiol. - 1995, Vol. 90, No. 5, P. 3573-64

8.     Kloner R.A. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Kloner R.A., Rude R.E., Carlson N., [et al.] Circulation. 1980, Vol. 62, P. 945-952.

9.     Kleinbongard P. Vasoconstrictor potential of coronary aspirate from patients undergoing stenting of saphenous vein aortocoronary bypass grafts and its pharmacological attenuation. Kleinbongard P., Bose D., Baars T., [et al.] Circ Res. 2011, Vol. 108, P 344352

10.   Galagudza M.M., Sonin D.L., Pochkaeva E.I. Postischemic non-restoration of blood flow: mechanisms and therapeutic targets. Regionarnoe krovoobrashchenie i mikrocirkulyaciya. 2018. T. 17, №1. S.5-12. [In Russ].

11.   Higginson L.A. Determinants of myocardial hemorrhage after coronary reperfusion in the anesthetized dog. Higginson L.A., White F., Heggtveit H.A., Sanders T.M., Bloor C.M., Covell J.W. Circulation. 1982, Vol.65, P 62-69. 

12.   Kaul S. Microvasculature in acute myocardial ischemia: part II: evolving concepts in pathophysiology, diagnosis, and treatment. Kaul S., Ito H. Circulation. 2004, Vol. 109, P 310-315.

13.   Theilmeier G. Hypercholesterolemia in minipigs impairs left ventricular response to stress: association with decreased coronary flow reserve and reduced capillary density. Theilmeier G., VerhammeP, DymarkowskiM., [et al.] Circulation. — 2002; Vol. 106, P 1140-1146.

14.   Dogan N.B. Simple clinical risk score for no-reflow prediction in patients undergoing primary percutaneous coronary intervention with acute STEMI. Dogan N.B., Ozpelit E., Akdeniz S., Bilgin M., Baris N. Pak J Med Sci. - 2015, Vol. 31, No. 3. P 576-581.

15.   Plechev V.V., Risberg R.YU., Buzaev I.V. [et al.] Predictors of the development of intraoperative and early complications with planned stenting of coronary arteries. Permskij medicinskij zhurnal. 2017. T.34, №5. S.5-12. [In Russ].

16.   Kundin V.YU. Quantification of viable myocardium by radionuclide method. Serdechnaya nedostatochnost’. - 2010. №1. S.20-25. [In Russ].

17.   Strauss H.W. Procedure guideline for myocardial perfusion imaging 3.3. Strauss H. W., Miller, D. D., Wittry M.D., [et al.]. Journal of Nuclear Medicine Technology. 2008, Vol. 36, No. 3, P 155-161.

18.   Lockie T. Use of cardiovascular magnetic resonance imaging in acute coronary syndromes. Lockie T., Nagel E., Redwood S., Plein S. Circulation. 2009, Vol. 119, P 1671-1681

19.   Hayat S.A. Myocardial contrast echocardiography in ST elevation myocardial infarction: ready for prime time? Hayat S.A., Senior R. Eur Heart J. 2008, Vol. 29, P 299214. 

20.   Granfeldt A. Protective ischemia in patients: preconditioning and postconditioning. Granfeldt A., Lefer D.J., Vinten-Johansen J. Cardiovasc. Res. 2009, Vol. 83, No. 2, P. 234-246.

21.   M. R. Schmidt. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic preconditioning. M. R. Schmidt [et al.] Am. J. Physiol. Heart Circ. Physiol. 2007, Vol. 292, No. 4, P 1883-1890.

22.   Heusch G. Remote ischemic conditioning. Heusch G., Botker H.E., Przyklenk K., [et al.] J Am Coll Cardiol. 2015, Vol. 65, P 177-195.

23.   Vinten-Johansen J. Perconditioning and postconditioning: current knowledge, knowledge gaps, barriers to adoption, and future directions. Vinten-Johansen J., Shi W. J. Cardiovasc. Pharmacol. Ther. 2011, Vol. 16, No. 34, P 260-266.

24.   Mojbenko A. A., Dosenko V.E., Parhomenko. A.N Endogenous mechanisms of cardioprotection as a basis for pathogenetic therapy of heart diseases. Kiev, Naukova dumka, 2008. C. 520. [In Russ]. 

25.   Lishmanov YU.B., Maslov L.N. Ischemic postconditioning of the heart. Receptor mechanisms and clinical applications. Kardiologiya. 2010. №6. S.68-74.

26.   Zhao Z.Q. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Zhao Z.Q., Corvera J.S., HalkosM.E. , [et al.] Am. J. Physiol. Heart Circ. Physiol. 2003, Vol. 285, No. 2, P 579-588.

27.   Jivraj N. Ischaemic postconditioning: cardiac protection after the event. Jivraj N., Liew F, Marber M. Anaesthesia. 2015, Vol. 70, P 598-612.

28.   Limalanathan S. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. Limalanathan S., Andersen G.lll., Klaw N.E., Abdelnoor M., Hoffmann P, Eritsland J. J. Am. Heart Assoc. 2014, Vol. 3, No. 2, e000679.

29.   Cung T.T. Cyclosporine before PCI in patients with acute myocardial infarction. Cung T.T., Morel O., Cayla G., Rioufol G., Garcia-Dorado D., Angoulvant D., [et al.] New Engl. J. Med.-2015, Vol. 373, P 1021-1031.

30.   Tissier R. The small chill: Mild hypothermia for car- dioprotection? Tissier R., Chenoune M., Ghaleh B., Cohen M.V., Downey J.M., Berdeaux A. Cardiovasc Res. 2010, Vol. 88, P 406-414.

31.   O'Neill W. COOL-MI: Cooling as an Adjunctive Therapy to Percutaneous Intervention in Patients with Acute Myocardial Infarction. O'Neill W. Paper presented at: 15th Annual Transcatheter Cardiovascular Therapeutics Washington DC 2003.

32.   Erlinge D. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction (The CHILL-MI trial). Erlinge D., Gutberg M., LangI., [et al.] J Am Coll Cardiol. 2014, Vol. 63, No. 18, P. 1857-1865

33.   Marzilli M. Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute myocardial infarction. Marzilli M., Orsini E., Marraccini P., [et al.] Circulation. - 2000, Vol. 101, P. 2154-2159.

34.   Liu G.S. Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart. Liu G.S., Richards S.C., Olsson R.A., Mullane K., Walsh R.S., Downey J.M. Cardiovasc Res. 1994, Vol. 28, P. 1057-1061.

35.   Liu G.S. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Liu G.S., Thornton J., Van Winkle D.M., Stanley A.W., Olsson R.A., Downey J.M. Circulation. 1991, Vol. 84, P. 350-356.

36.   Niu X. Effect of intracoronary agents on the noreflow phenomenon during primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction: a network meta-analysis. Niu X., Zhang J., Bai M., Peng Y, Sun S., Zhang Z. BMC Cardiovascular Disorders. 2018, Vol.18, P. 3.

37.   Pan W. Intracoronary nitroprusside in the prevention of the no-reflow phenomenon in acute myocardial infarction. Pan W., Wang L.F., [et al.] Chin Med J (Engl). 2009, Vol. 122, No. 22, P. 2718-2723

38.   Zhao S. Effect of intracoronary nitroprusside in preventing no reflow phenomenon during primary percutaneous coronary intervention: a meta-analysis. Zhao S., Qi G., Tian W., Chen L., Sun Y J Interv Cardiol. 2014, Vol. 27, No. 4, P. 356-364.

39.   Haeck J.D. Infarct size and left ventricular function in the PRoximal Embolic Protection in Acute myocardial infarction and Resolution of ST-segment Elevation (PREPARE) trial: ancillary cardiovascular magnetic resonance study. Haeck J.D., Kuijt W.J., Koch K.T., et al. Heart. 2010, Vol. 96, P. 190-195.

40.   Haeck J.D. Proximal embolic protection in patients undergoing primary angioplasty for acute myocardial infarction (PREPARE): core lab adjudicated angiographic outcomes of a randomised controlled trial. Haeck J.D., Koch K.T., Gu YL., [et al.] Netherlands Heart Journal. - 2010, Vol. 18, No. 11, P. 531-536.

41.   Gurvitch R. Protection Devices and Thrombectomy for Native Coronary Artery ST Elevation Myocardial Infarction. Gurvitch R., Ajani A., Yan B., [et al.] J. Invasive Cardiol. 2008, Vol. 20, No. 4, P. 190-195.

42.   Stone G. Distal Microcirculatory Protection During Percutaneous Coronary Intervention in Acute ST Segment Elevation Myocardial Infarction. Stone G., Webb J., Cox D., [et al.] J. Am. Heart Assoc. - 2005, Vol. 293, No. 9, P. 10631072.

43.   De Luca G.. Adjunctive manual thrombectomy improves myocardial perfusion and mortality in patients undergoing primary percutaneous coronary intervention for ST elevation myocardial infarction: a metaanalysis of randomized trials. De Luca G., Dudek D., Sardella G., [et al.] Eur. Heart J. - 2008, Vol. 29, P. 3002-3010.

44.   Jolly S.S. Thrombus Aspiration in ST-Segment- Elevation Myocardial Infarction: An Individual Patient MetaAnalysis: Thrombectomy Trialists Collaboration. Jolly S.S., James S., Dhavнk V., [et al.] Circulation. 2017, Vol. 135, P. 143-152.

45.   Ibanez B.. Acute Myocardial Infarction in patients presenting with ST-segment elevation (Management of) ESC Clinical Practice Guidelines 2017. Ibanez B., James S.,    Ag S., [et al.] Eur. Heart J. 2017, P. 1-66

46.   Schroder R. Extent of early ST segment elevation resolution: a simple but strong predictor of outcome in patients with acute myocardial infarction. Schroder R., Dissmann R., Bruggemann T., [et al.] J. Am. Coll. Cardiol. 1994, Vol. 24, P. 384-391.

47.   Taghizadeh B. AngioJet trombectomy and stenting for reperfusion in acute MI complicated with cardiogenic shock. Taghizadeh B., Chiu J.A., Papaleo R., [et al.] Cathet. Cardiovasc.Invervent. - 2002, Vol. 57, P. 79-84. 

 

 

Abstract:

The article presents a case report of endovascular treatment of acute superior mesenteric artery occlusion in a patient with long reception of new oral anticoagulants. Despite the low incidence of this condition (3-5%), mortality in patients with this pathology is extremely high (80-85%). In this case combination of percutaneous mechanical thrombaspiration from superior mesenteric artery by coronary thrombaspiration system and intravenous GP IIb/IIIa antagonists demonstrated satisfactory outcome. Endovascular interventions proved to be effective, minimally invasive and safe technique in patients with acute mesenteric ischemia in superior mesenteric artery system.

 

References

1.      Akberov RF, Sharafeev AZ, Mikhailov MK. Progressive multifocal atherosclerosis: etiology, clinical and radiation diagnosis, modern aspects of treatment. Kazan: Idel-Press. 2008: 214 [In Russ].

2.      Lyubskiy AS. Thrombectomy for superior mesenteric artery thrombosis. Hirurgiya. 1964; 11: 118-121 [In Russ].

3.      Savelyev VS, Spiridonov IV. Acute disorders of mesenteric circulation М.: Medicine; 1979: 232 [In Russ].

4.      Arthurs ZM, Titus J, Bannazadeh M. et al. A comparison of endovascular revascularization with traditional therapy for the treatment of acute mesenteric ischemia. J Vasc Surg. 2011; 53 (3): 698-704.

5.      Klas AA. Embolectomy in acute mesenteric occlusion. Ann Surg. 1951; 134: 913-917.

6.      Shaw RS, Maynard EP Acute and chronic thrombosis of the mesenteric arteries associated with malabsorption: A report of two cases successfully treated by thromboendarterectomy. N Engl J Med. 1958; 258 (18): 874-878.

7.      Acosta S. Surgical management of peritonitis secondary to acute superior mesenteric artery occlusion. World J Gastroenterol. 2014; 20(29): 9936-9941.

8.      Revesz ES. Acute mesenteric ischemia: analysis of cases admitted to a hospital during 10 years (20012010). OrvHetil. 2012; 153(36): 1424-1432.

9.      Corcos O, Castier Y Sibert A et al. Effects of a multimodal management strategy for acute mesenteric ischemia on survival and intestinal failure. Clin Gastroenterol Hepatol. 2013; 11 (2): 158-165.

10.    Furrer J, Gruntzig A, Kugelmeier J et al. Treatment of abdominal angina with percutaneous dilatation of an arteria mesenterica superior stenosis. Cardiovasc Intervent Radiol. 1980; 3(1):43-44.

11.    Khripun AI, Mironkov AB, Pryamikov AD. et al. Endovascular surgery in the treatment of superior mesenteric artery acute occlusion (literature review). Diagnosticheskaya iinterventsionnaya radiologiya. 2014; 8 (3): 6771 [In Russ].

12.    Shipovskiy VN, Tsitsiashvili MSh, Khuan Ch. и др. Rheolytic thrombectomy and stenting of the superior mesenteric artery in acute mesenteric thrombosis (clinical observation). Angiologiya i sosudistaya khirurgiya. 2010; 16(3): 49-54 [In Russ].

13.    Kuhelj D, Kavcic P, Popovic P Percutaneous mechanical thrombectomy of superior mesenteric artery embolism. Radiol Oncol. 2013; 47(3): 239-243.

14.    Cortese B, Limbruno U. Acute mesenteric ischemia: primary percutaneous therapy. Catheter CardiovascInterv. 2010; 75(2): 283-285.

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы